Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Microbiol Immunol Infect ; 55(1): 166-169, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1700704

ABSTRACT

This was a preliminary study on ultraviolet C (UVC) irradiation for SARS-CoV-2-contaminated hospital environments. Forty-eight locations were tested for SARS-CoV-2 using RT-PCR (33.3% contamination rate). After series dosages of 222-nm UVC irradiation, samples from the surfaces were negative at 15 s irradiation at 2 cm length (fluence: 81 mJ/cm2).


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection , Humans , Ultraviolet Rays , Virus Inactivation/radiation effects
2.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1542797

ABSTRACT

To overcome the ongoing coronavirus disease 2019 (COVID-19) pandemic, transmission routes, such as healthcare worker infection, must be effectively prevented. Ultraviolet C (UVC) (254 nm) has recently been demonstrated to prevent environmental contamination by infected patients; however, studies on its application in contaminated hospital settings are limited. Herein, we explored the clinical application of UVC and determined its optimal dose. Environmental samples (n = 267) collected in 2021 were analyzed by a reverse transcription-polymerase chain reaction and subjected to UVC irradiation for different durations (minutes). We found that washbasins had a high contamination rate (45.5%). SARS-CoV-2 was inactivated after 15 min (estimated dose: 126 mJ/cm2) of UVC irradiation, and the contamination decreased from 41.7% before irradiation to 16.7%, 8.3%, and 0% after 5, 10, and 15 min of irradiation, respectively (p = 0.005). However, SARS-CoV-2 was still detected in washbasins after irradiation for 20 min but not after 30 min (252 mJ/cm2). Thus, 15 min of 254-nm UVC irradiation was effective in cleaning plastic, steel, and wood surfaces in the isolation ward. For silicon items, such as washbasins, 30 min was suggested; however, further studies using hospital environmental samples are needed to confirm the effective UVC inactivation of SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , Infection Control/methods , SARS-CoV-2/radiation effects , Ultraviolet Rays , COVID-19/virology , Dose-Response Relationship, Radiation , Hospitals , Humans , SARS-CoV-2/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL